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ABSTRACT
Predicting whether or not a user would like a particular song
has became an important but challenging matter for online
music services. If they can accurately predict such informa-
tion, they can feed the users with delightful content and
therefore grow their business rapidly. However, the challeng-
ing side of this problem is the increasing number of music
and the growing number of users. This two factors make
the music recommending without enough historical data an
over-whelming task. In this project, we picked a particular
data challenge from the 11th ACM International Conference
on Web Search and Data Mining (WSDM 2018), which re-
quires us to predict whether or not a user will re-listen to a
song that was recommended to him or her previously. After
learning from the discussion in the Kaggle challenge web-
site and investigating relevant research papers in the field
of recommender system, we experimented several different
methods for re-listen prediction. Our results show both the
importance of feature engineering and also the effectiveness
of click-through-rate (CTR) prediction models in the problem
of music re-listen prediction.

KEYWORDS
Recommender system, Click-through-rate, Data Mining

1 INTRODUCTION
In this project, we try to predict whether a user of a music
app would re-listen to a song after he or she listened to that
song for the first time. As a data challenge from 11th ACM
International Conference onWeb Search and Data Mining
(WSDM 2018), more than 1,000 teams made their submis-
sions before us and the top player gives 0.75 testing AUC in
the leaderboard.
As a course project, our main focus is not to achieve cer-
tain performance on the leaderboard, but to experience the
whole modeling pipeline from raw, uncleaned data to final
prediction. We would also like to explore different models,
espcially the state-of-art models in recommending system, to
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user_id song_id artist
30,755 359,966 222,363

Table 1: Number of Unique Values

see if we can apply the machine learning theory we learned
from class into practice.
In fact, this problem is also a great project for machine learn-
ing to solve: the huge amount of user behavior records and
the high dimensional nature of the data makes it hard for
any human to figure out a patter, while the input and output
of this problem is well defined as a classification problem.
Also note that, although it seems like a task to "recommend
music", a more similar example in real world should be click-
through-rate(CTR) prediction. Another goal of this project
is to apply state-of-art CTR prediction models to see if they
can also be applied to music re-listen prediction.

2 DATASET
The dataset is publicly available on Kaggle.com[13]. It con-
sists of multiple parts, training set, user set, and song set.
The main training set contains 7,377,418 entries, each with 5
features - User id, Song id, The name of the tab where the
event was triggered, Name of the layout a user sees, and En-
try point where the user first played the music - and 1 target
- Recurring listening event(s) triggered within a month after
the user’s very first observable listening event, 1 for event
being positive and 0 otherwise.
While we have 7,377,418 user (id) – song (id) pairs, there
are 11.07 ∗ 109 pairs in total (see Table 1 for details), which
means in a use (id) – song (id) target matrix there will be
only 0.07% meaningful entries. Additionally, 27,0341 out of
359,966 unique songs appears less than or equal to 5 times, so
75.1% columns in the target matrix have the number of mean-
ingful elements no more than 5, out of 34,403 (see Figure 1
for details). The situation of low counts having overwhelm-
ing occurrence also happens to "user id" from the train set
and "artist" from the song set (see Figure 2 and Figure 3 for
details). For numerous users, only have recurring decisions
on very few songs that implies a huge variance or uncer-
tainty on our prediction on the taste of users with similar
characteristics. In other words, we are facing a really sparse
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Figure 1: Songs Occurrence

matrix. Sparse matrix is not friendly, even challenging, to ML
algorithms in many ways, such as computational expensive-
ness, speed decreasing, etc. Therefore, since the information
provided by original data sets is not ideal for machine learn-
ing, we are going to solve this problem before we head to our
models by applying matrix factorization, especially SVD, to
get embeddings for users/songs/artists and hence construct
more valuable matrices for our models.

3 METHOD
3.1 Data Cleaning & Preprocessing
Since the "dirty-nature" of such a real-world dataset, we need
to preprocess the data before any other works. We conducted
the following preprocessing.

3.1.1 Data Imputation. We first investigated the percentage
ofmissing data (see Table 2 for details). For themissing values
in the table, which are all missing more than 0.1% of the data,
we imputed them all as "unknown" and latter in the ordinal
encoding, they are encoded as a separate class. Other features
not noted in the Table 2 have less than 0.1% of missing data,
and we directly imputed them with either random sample
(categorical data) or average sample (numerical data).

3.1.2 Data Cleaning. In the dataset, one of the feature that
is intuitively critical but also consists lots of outliers is the
"age" feature. There are around 58% of the age data that are
either less than 0 or greater than 100, which are both

Figure 2: User Occurrence

Figure 3: Artist Occurrence

clear signals of being outliers. The way we handle this is by
imputing them with the average age given by the "register
via" feature, with the assumption that people register the
app in the same way would be in the same age range (see
Table 3).

2
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Figure 4: Train Data Correlation

Figure 5: User Data Correlation

Feature Missing Percentage
source_system_tab 0.35%
source_screen_name 5.60%

source_type 3.00%
genre_ids 4.10%
composer 46.65%
lyricist 84.71%
gender 57.84%

Table 2: Missing Data Percentage

Figure 6: Songs Data Correlation

Figure 7: All Data Correlation

3.1.3 Ordinal Encoding. For all the categorical features, we
used ordinal encoding to replace the strings and numbers
with integer value in [0, 𝑁𝑢𝑛𝑖𝑞𝑢𝑒_𝑣𝑎𝑙𝑢𝑒𝑠 ). In the later part, we
either one-hot encode those values or feed them into the
model that can embed them into vectors.

3.2 Feature Engineering
Given data fields in the dataset are either categorical data in
various formats (strings, integers, etc.) or numerical features
in various scales (music length in seconds, age in years, etc.).
Therefore, it is necessary to engineer these features to better
prepare for the latter parts. In this part, we were inspired by

3



319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

CIS-520, Intro. Machine Learning, Fall2021 Zhaoyi Hou*, Jiaxuan Ren*, Kaihan Zhu*, Fangzhou Yu*

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

Figure 8: Source Screen Features

Figure 9: Source System Features

Figure 10: Source Type Features

the discussion in Kaggle.com where previous participants
of this challenge shared their thoughts about different ways
of feature engineering. In particular, the idea of probabilis-
tic features and the log-count features is inspired by user
@lystdo [8].

3.2.1 Probabilities from Categorical Data. Users have differ-
ent habits and preferences; similarly, songs and artist have
different characteristics. For example, a user may have strong
previous preference to listen to the songs from a particular

Average Age Register Via
26.83 3
26.60 4
30.40 7
30.40 9
25.75 13
28.89 16

Table 3: Average Age by Register Ways

Note: We don’t have the exact information about which
register method each number represents.

New Feature Group
P(Source Type | User ID) User

P(Source Screen Name | User ID) User
P(Source System Tab | User ID) User

P(Source Type | Song ID) Song
P(Source Screen Name | Song ID) Song
P(Source System Tab | Song ID) Song

P(Artist Name | User Id) User & Song
P(Genre | User Id) User & Song

P(Language | User Id) User & Song
Table 4: Conditional Probability Features

New Feature Group
Song | Artist Song

Song | Composer Song
Song | Lyricist Song
Genre | Song Song
Song | Genre Song
Song | User ID User & Song
User ID | Song User & Song
User ID | Artist User & Song
Table 5: Logcount Features

screen over others (e.g. home page V.S. artist page); an artist
may have lots of songs published compared to other less
productive artist. Therefore, we believe different features
will have different predicting power condition on either the
user or the song. Therefore, we calculated the following
conditional features.

3.2.2 Log-count of Catrgorical Data. Another kinds of in-
formative features are the count features. For example, if an
artist has lots of songs on the platform, it is an indication
of famous artist and might contribute to re-listening behav-
ior. In order to reduce the effect of different magnitute, we
calculate the count in the log space.

4
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3.2.3 Embeddings of song id and artist name using SVD. We
constructed a user id to song id matrix and a user id to artist
name matrix. In this matrix, if user id 𝑖 churned on song id
𝑗 , then the entry at 𝑖, 𝑗 in the user id to song id matrix is
1. Otherwise, 0. Then, SVD is applied on user id to song id
matrix to construct 48 principal components for each song
id to achieve the purpose of embedding song id’s. The same
process is done for user id to artist name matrix, but with 16
principal components.

3.3 Models
We defined random guessing as our weak baseline, and
logistic regression as our strong baseline. To utilize the fact
that we have many categorical features, we experimented
gradient boosting with LightGBM. To capture information
not accessible to logistic regression, we designed a simple
feed-forward neural net. We also make use of two open
source state-of-art neural net models, DeepFM and DIFM,
which are specifically designed for recommender systems.
Lastly, we ensemble different methods to generate better
results.

3.3.1 Baseline Logistic Regression. We utilized a simple lo-
gistic regression model as our strong baseline model. For
baseline model, little data processing has been done. We
utilized only the training data, without any additional in-
formation from the songs or users dataset, and performed
one-hot encoding on all categorical features except userid
and songid, which has too many entries to be encoded. We
then utilized a logistic regression with logistic loss function

𝑓 (𝑥) = 1
1 + 𝑒−𝑥

(1)

which outputs the probability of whether the user would
listen to this song again.

3.3.2 Gradient Boosting with LightGBM. Also inspired by
the top scorer in this very Kaggle challenge, @lystdo [8], we
constructed a LightGBM model to generate the probabilities
of churning. LightBGM, different from other gradient boost-
ing machines, is optimized in speed and memory usage. It
uses histogram-based algorithms to choose the features and
values to split on. For continuous features, it bin them into
discrete bins. It only uses a set number of bins rather than
all possible values, leading to less memory usage and faster
computation. For categorical features, it split them into two
subsets. In this way, it no longer requires one-hot encoding
for categorical features, which would cause the tree to grow
deep and unbalanced to achieve a decent result. This method
for categorical features leads to optimal memory usage and
higher accuracy with simpler trees. Indeed, we have a lot
of categorical features in our data, using LightGBM reduces

Figure 11: Feed-forward Neural Network Architect

our memory usage drastically. Therefore, LightGBM is a
desirable choice to solve our problem.

3.3.3 Feed-forward Neural Network. We constructed a sim-
ple feed-forward neural network in an effort to capture hid-
den information that might be missing from logistic regres-
sion model. We constructed the neural network with three
layers. The first layer is a fully connected layer with 512
neurons, followed by a ReLU activation function; the second
layer is a fully connected layer with 1024 neurons, followed
by a ReLU activation function; the layer is followed by a
batch normalization; finally, we connected the output with
one neuron and a sigmoid activation function, which then
outputs the probability that we need. (see Figure 11 for detail).

3.3.4 DeepFM & DIFM. Since the problem of re-listen pre-
diction is very similar to the click-through-rate prediction
in advertisement prediction, we also tried two neural based
model specifically designed for online advertising: DeepFM
and DIFM [5] [7]. Both of them are variations of factorization
machine, which tries to predict the following:

ˆ𝑦𝐹𝑀 (𝑥) = 𝑤0 +
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 +
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

< 𝒗𝒊, 𝒗𝒋 > 𝑥𝑖𝑥 𝑗 (2)

, where the𝑤𝑖 are the real value weights and 𝑣𝑖 are the k-
dimensional embedding of the i-th feature. With the second-
order term < 𝒗𝒊, 𝒗𝒋 >, the interaction between every two
features is captured by the model. In this way, factorization
machine is able to accomplish the functionality of collaborate
filtering without doing the traditional matrix factorization.
The difference between DeepFM and DIFM compared to the
original factorization machine is that: both DeepFM and
DIFM combined the idea of factorization machine and the
deep neural network.
In DeepFM (Deep Factorization Machine), the features are
used twice: first, they are directly sent to a fully connected
neural net to produce a representation of the user; second,
they are also sent to the a FM network to produce another
representation. In the end, this two vectors will be combined
using a learnable weight to produce the final prediction (see
Figure 12 for detail).
In DIFM (Dual Input-aware Factorization Machine), which
was introduced after DeepFM, the main innovation is the
combination of DeepFM architect and the idea of self-attention.
In the DIFM, the raw input is also used twice, one in a fully
connected network and the other in a factorization machine
network (FM network). In particular, in the FM network,
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Figure 12: DeepFM Architect[11]

Figure 13: DIFM Architect[7]

the inner-product (< 𝒗𝒊, 𝒗𝒋 >) used in regular factorization
machine and in DeepFM is replace by a Dual Input-aware
Factorization Machines [7] which is 1) a bit-wise vector mul-
tiplication and 2) a vector level multi-head self-attention.
Just like in the DeepFM, the output of the fully connected
network and the FM network went through a weighted com-
bination to give the final prediction. (see Figure 13 for detail).

3.3.5 Ensembles of different models. We have ensembled
LightGBM and DIFM. We selected the best LightGBM and
the best DIFM. We have experimented with different ways of
ensemble: 1. weighted average of probabilities, 2. selecting
the larger probabilities, 3. selecting the smaller probabilities,
3. selecting probabilities from two models or their average
based on whether they agreed to each other or not.

3.4 Loss Function
Since this is a binary classification problem, we will stick
to the tradition and use binary cross entropy as our loss
function:

𝐿𝑜𝑠𝑠𝐵𝐶𝐸 = − 1
𝑁

𝑁∑︁
𝑖=1

𝑦𝑖𝑙𝑜𝑔(𝑝 (𝑦𝑖 )) + (1 − 𝑦𝑖 )𝑙𝑜𝑔(1 − 𝑝 (𝑦𝑖 ))

Model Training Data Group
Random Guessing N/A Baseline (Weak)
Logistic Regression User Behavior Data Baseline (Strong)

SVM Full Feature Set Machine Learning
LightGBM Full Feature Set Machine Learning
DeepFM Full Feature Set Deep Learning
DIFM Full Feature Set Deep Learning
Table 6: Training Data Group Summary

The reason we choose binary cross entropy is that: since we
are trying to predict a probability, we need to measure the
differences between our predicted probabilistic distribution
and the actual distribution (i.e. target). Therefore, binary
cross entropy one it’s own can accomplish it.

4 EXPERIMENT AND ANALYSIS
4.1 Evaluation
Since the task is part of a Kaggle competition, we are using
the same evaluation metric that competition requires, which
is Area-under-the-curve (AUC) of ROC curve. Howerver, one
might argue that AUC does not work well with un-balanced
data, which is the case in real-world recommender system
setup. But in our problem, the data is well-balanced (51%
positive instances), which means this concern is addressed.
Another concern about AUC is that, in the general scenario
of making recommendation, not all of the recommendations
should be considered equally: only the first few results are im-
portant and would be visited by the user, which makes only
the first few instances important. In the contrary, AUC con-
sider the mis-match in all instances equally, no matter how
close it is with the actual target[6]. This built-in feature of
AUC of ROC curve can be troublesome in the "recommand-
the-best-song" scenario, where the user is recommended
only one or few songs based on the model. However, when
it comes to our problem, which requires us to predict the
probability of whether the user would listen again, all the
negative and positive instances matter roughly equally. That
is because, there is no previous assumption about what kinds
of songs are shown to the user more often than others. In
other words, we want to make sure our model can perform
as better in both negative cases and positive cases.

4.2 Training Setup
Note that, all the models in this section are trained on the
first 80% of the data (trainning set) and evaluated on the final
20% of the data (validation set).

4.2.1 Logistic Regression. As our strong baseline, we only
used user behavior data as our prediction input:
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Hyper-parameter DeepFM DIFM
Optimizer Adam Adam

Learning Rate 1e-5 1e-5
Loss BCE BCE

Batch Size 256 256
Epochs 4 5

Embedding Size 16 16
DNN use Batch-Normalization True True

Linear Layer L2 Reg. 1e-2 1e-2
DNN Layer L2 Reg. 1e-2 1e-2

Embedding Layer l2 Reg. 1e-2 1e-2
DNN Dropout 0.4 0.4

DNN Hidden Dimensions (256, 128) (256, 128)
Num. of Attention Head N/A 8
Table 7: DeepFM & DIFM Training Setup

source_system_tab, source_screen_name, source_type.
In other words, the song-related and user-related informa-
tion are not used in prediction. In the experiment, we used
Scikit-learn api for training[9]. As for the choice of hyper-
parameters, we have the most basic ones: 𝐶 = 1,𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 =
1000.

4.2.2 SVM. SVM is a great model to be our baseline. It
is a widely used model and usually out performs Logis-
tic Regression. In experiment, we used Scikit-learn api for
training[9]. We have constructed a SVM model with a L2
regularization parameter of 1. We feed the same data as Lo-
gistic Regression to this SVM model, one hot encodings of
source_system_tab, source_screen_name, source_type.
We have it trained for 7200 minutes, and it is still running.
Therefore, we failed to construct any usable or trained model
using SVM. This may be due to the fact that SVM is known
to be slow to train. With large amount of data, like ours, it
take even longer to train. Therefore, our SVM has not yet
converged as the time of writing this report.

4.2.3 Basic Neural Net. We first used TensorFlow Keras[1]
built a basic feed-forward neural net which one-hot encoded
every feature except for the user_id and song_id, since they
are too sparse to encode using one-hot. We then train it on
Google Colab GPU with the specified hyper-parameters in
Table 9.

4.2.4 DeepFM & DIFM. We use the open-source implemen-
tation called DeepCTR-Torch [11] to conduct experiment of
DeepFM model and DIFM model on our processed dataset.
We trained them using the hyper-parameters shown in Ta-
ble 7 and evaluate on the pre-set validation set. As for the
training environment, we trained both networks with the
provided Google Colab GPU (single-core).

Hyper-parameter Value
N Estimators 100
Learning Rate 1e-1

Leaves 2048
Max Depth 32

Table 8: LGBM Training Setup

Hyper-parameter Value
Optimizer Adam

Learning Rate 1e-3
Loss binary_crossentropy

Batch Size 2048
Epochs 30

Table 9: Simple Neural Net Training Setup

Figure 14: ROC Curve Comparison (All Models)

4.2.5 LightGBM. We used the open-source LightGBM pack-
age developed by Microsoft[3] for training experiment. Dif-
ferent number of leaves and max depth had experimented
and the best of them is chosen to be our final model. (see
Table 8 for detail).

4.3 Results
After training all the models as specified above, we compared
their validation and testing AUC as shown in Table 11. We
also plotted their ROC curve in the Figuer 14 with respect to
the validation dataset (since the actual test set label is only
available by Kaggle.com).

4.4 Analysis
4.4.1 Sub-par neural net. An interesting finding regarding
neural networks is that its performance is almost the same
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Model Validation AUC Test Score
Random Guessing 0.5 0.5
Logistic Regression 0.59 0.5

SVM N/A N/A
LightGBM 0.67 0.65
DeepFM 0.65 0.57
DIFM 0.68 0.59

Table 10: Model Scores Comparison

Figure 15: ROC Curve (Logistic Regression V.S. Simple
NN)

as logistic regression, with highly similar AUC values. (see
Figure 15 for detail). We’ve tried different data, including
one-hot encoding encompassing different datasets, as well as
different embeddings. However, all of them worked almost
exactly the same as logistics regressions. We’ve also tried
different hyperparameters such as different learning rate,
different depths and sizes of the network, as well as different
combinations of the layers, but none of them resulted in any
significant improvement from a logistic regression model. A
possible explanation is that the data is too sparse and has too
many missing data such that a neural network cannot extract
any more information without further feature engineering.

4.4.2 LightGBM. Hyperparameters of 2048 and 64 for num-
ber of leaves and max depth are chosen, respectively. The
AUC accuracy for our training data is 0.85 and AUC accuracy
for our validation data is 0.67. After training on the whole
training data, including the validation data, it achieved a test
AUC accuracy of 0.65 on Kaggle private leaderboard. It has
the highest AUC accuracy among all tested hyperparameters.
We can see that LightGBM overfits the training data a lot, but
it still improves validation AUC as training AUC increases.

Leaves Depth Train AUC Val AUC
8 8 0.73 0.64
16 8 0.73 0.65
16 16 0.73 0.65
32 8 0.74 0.65
32 16 0.74 0.65
32 32 0.74 0.65
64 8 0.75 0.65
64 16 0.75 0.65
64 32 0.75 0.65
64 64 0.75 0.65
128 8 0.76 0.65
128 16 0.76 0.66
128 32 0.76 0.66
128 64 0.76 0.66
256 8 0.76 0.65
256 16 0.78 0.66
256 32 0.78 0.66
256 64 0.78 0.66
256 128 0.78 0.66
512 16 0.79 0.66
512 32 0.80 0.66
512 64 0.80 0.66
512 128 0.82 0.66
1024 16 0.82 0.66
1024 32 0.82 0.66
1024 64 0.82 0.66
1024 128 0.82 0.66
2048 16 0.84 0.66
2048 32 0.85 0.67
2048 64 0.85 0.67
2048 128 0.85 0.67

Table 11: LightGBM Hyperparameter Search

4.4.3 DeepFM&DIFM. It is slightly surprising that DeepFM
and DIFM are not even close to the LightGBM model. The
main problem here is the expensive training time and com-
putational power. To train a DeepFM or a DIFM model, it
generally takes 30 minutes for training and validation. Since
they also have lots of hyper-parameter to tune, it might be
that we are not in the correct hyper-parameter space for
this problem (e.g. requires much less learning rate and much
more epoches).
Another plausible reason that the DeepFM and DIFM are
not out-performing the LightGBM is that, it might have too
many redundant features. As mentioned in the original pa-
per about DeepFM [5], factorization machine by itself is
creating lots of second-order features that try to capture
interaction between different features via embedded vector
multiplications. Some of the features might be helpful, for
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example < 𝒗𝒖𝒔𝒆𝒓 , 𝒗𝒔𝒐𝒏𝒈 > could capture the relevance of this
user and this particular song, with the assumption that if
they are more relevant, this inner product should be larger.
But most other combinations, such as < 𝒗𝒈𝒆𝒏𝒓𝒆, 𝒗𝒄 𝒊𝒕𝒚 > and
< 𝒗𝒍𝒚𝒓 𝒊𝒄 𝒊𝒔𝒕 , 𝒗𝒓𝒆𝒈𝒊𝒔𝒕𝒆𝒓_𝒗𝒊𝒂 >, does not make intuitive sense.
Therefore, although these two models introduced promising
second-ordered features, they also introduced redundancy
in features. At least in our experiment, the disadvantage
slightly out-weights the advantages.

4.4.4 Ensemble of DIFM and LightGBM. We have experi-
mented with ensembling DIFM and LightGBM. All our em-
semble methods produces less than desirable results, except
for weighted average. Weighted average of the produced
probabilities do increases prediction accuracy. We have dis-
covered that the best weight for the weighted average en-
semble is 0.2 for DIFM and 0.8 for LightGBM. It increases the
test AUC accuracy from 0.650 to 0.654. Although the increase
is marginal, it can be a win or lose for this competition.

5 RELATEDWORK
There are many previous work done around this problem.
Two of the most significant ones are the first place solution to
this very challenge by @lystdo and the matrix factorization.

5.1 Solution by @lystdo
In this person’s proposed solution, which eventually achieves
an impressive 0.75 AUC score, comprehensive feature en-
gineering and model ensemble are both used. Aside from
the probablistic features, log-count features and LightGBM
model, which we implement in our solutions, this person
also conducts the following:

• More feature engineering: in the dataset, there is
another field called "isrc" (International Standard
Recording Code), which is a code that contains the
year, country and other additional information about
the song;

• Trainable embedding: in @lystdo’s solution, he/she
also included a feed forward neural net that has a
trainable embedding for the categorical features (e.g.
gender, age, register via, etc.);

• Ensumble: @lystdo made an ensemble of 30 neural
network model and LightGBM model in his/her fi-
nal prediction, which we don’t have the time and
resources to train on. [8]

5.2 Matrix Factorization
Another important related-work in recommender system
is the matrix factorization [2]. As a common collaborative
filtering method, matrix factorization creates meaningful rep-
resentation for the discrete features (e.g. users, songs, artists,

etc.) so that these embeddings can help the final prediction.
In practice, the matrix to be factorized is the interaction
matrix between two features, one of which we are trying
to represent. For example, user-song matrix can be factor-
ized into two matrix with shape of [𝑁𝑢𝑠𝑒𝑟 ∗ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒] and
[ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒 ∗𝑁𝑠𝑜𝑛𝑔]. The way this method accomplish such
effect is to conduct a EM-style estimating procedure where
the two matrices are estimated after some iterations when
reconstruction loss goes below a pre-set threshold. Due to
the complexity of this procedure and the limitation of com-
putational resources for large matrix manipulation, we were
not able to incorporate this method in our models.

5.3 Click-through-rate (CTR) Prediction
Aside from the technical aspects, as the two sections above
mainly focus on, the formulation of our re-listen problem
is very similar to a click-through-rate prediction. We are
trying to predict re-listen after first listen just like online
merchants trying to predict purchasing after first clicking.
In this field, methods from many different perspective are
proposed. Some of them focus on feature engineering such
as keyword-clustering [10]; some of them emphasize the
importance of end-to-end learning with light-weight models
such as linear regression [4]; while others focus on building
the complicated model such as boosting-based models to
capture the sophisticated nature of the world [12]. All of
them shows the profound nature of CTR prediction as a
huge sub-domain of recommending system.

6 CONCLUSIONS AND FUTUREWORK
In conclusion, we showed that with in-depth feature engi-
neering, both neural-based models (DeepFM, DIFM) and
boosting-based models (LightGBM) gives above baseline
performances. In particular, neural-based models are not
out-performing boosting-based model on the hidden test-
set, showing the beauty of statistical machine learning once
again. However, even without much hyper-parameter tun-
ing, these CTR oriented models still beats the strong baseline
and shows that the CTR prediction problem and re-listen
prediction are can be solved in a similar manner.
As for the future works, two main possible directions are
novel models and feature engineering

• First, due to the limitation as a course project, we
did not explore the full potential of feature engineer-
ing. In particular, using unsupervised such as auto-
encoder and LDA to represent sparse features in the
dataset would be a very promising path in this direc-
tion.

• Second, a self-defined neural network with trainable
embeddingwould be an ideal middle-ground between
LightGBM and DeepFM/DIFM, since it can balance
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the over-shot of feature interaction brought up by the
DeepFM/DIFM and simultaneously introduce enough
non-linearity to model the complicated world.
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